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SUMMARY

This paper describes the Eulerian–Lagrangian boundary element model for the solution of incompress-
ible viscous flow problems using velocity–vorticity variables. A Eulerian–Lagrangian boundary element
method (ELBEM) is proposed by the combination of the Eulerian–Lagrangian method and the
boundary element method (BEM). ELBEM overcomes the limitation of the traditional BEM, which is
incapable of dealing with the arbitrary velocity field in advection-dominated flow problems. The present
ELBEM model involves the solution of the vorticity transport equation for vorticity whose solenoidal
vorticity components are obtained iteratively by solving velocity Poisson equations involving the velocity
and vorticity components. The velocity Poisson equations are solved using a boundary integral scheme
and the vorticity transport equation is solved using the ELBEM. Here the results of two-dimensional
Navier–Stokes problems with low–medium Reynolds numbers in a typical cavity flow are presented and
compared with a series solution and other numerical models. The ELBEM model has been found to be
feasible and satisfactory. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: boundary element method; Eulerian–Lagrangian method; Navier–Stokes equations;
velocity–vorticity formulation

1. INTRODUCTION

The velocity–vorticity form of the Navier–Stokes equations pioneered by Fasel [1] has been
established as an effective formulation for the solution of incompressible viscous flow
problems. In the recent times, many researchers used the velocity–vorticity formulation for the
calculations of two- and three-dimensional steady and unsteady flows using various numerical
methods, such as the finite difference method (FDM) [2], the finite element method (FEM) [3]
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and the boundary element method (BEM) [4]. In most investigations, the governing equations
have been written as a system of parabolic- and Poisson-type equations for the components of
the vorticity and velocity fields respectively. The main advantage of this formulation includes
the numerical separation of the kinematic and kinetic aspects of the fluid flow from the
pressure computation, which is determined afterwards from the known velocity and vorticity
fields.

The theoretical potential of the BEM for the solution of Navier–Stokes equations has been
adequately exposed by various researchers [5]. In the solution of the velocity–vorticity
formulation of the Navier–Stokes equations, two different types of equations (Poisson-type
and parabolic-type) are to be solved. While the Poisson-type equations can be accurately
solved with the BEM [6], the method is not so stable in the solution of the parabolic-type
transport equations [7].

While solving the parabolic-type transport equations, the numerical diffusion and dispersion
are the two major problems to be concerned with. The popular methods like the upwind FDM
[8] and upwind FEM [9] work well only for the problems in which the diffusion effect
dominates. In general, the high-order upwind schemes produce numerical oscillations in the
results, while the lower-order upwind schemes cannot avoid the numerical diffusion.

The Eulerian–Lagrangian method is a widely used scheme for the transport modeling. It is
a combination of the Eulerian method, in which the equation is solved on a fixed grid in space,
and the Lagrangian method, which utilizes either a deforming grid or a fixed grid in deforming
co-ordinates. The Eulerian–Lagrangian method (ELM) combines aspects of both approaches
so as to merge the simplicity of a fixed Eulerian grid with the computational power of the
Lagrangian method [10]. In the transport modeling using the ELM, the advection part is
solved by the Lagrangian method, which can be computed independently at each time step by
the method of characteristics applied to a grid fixed domain. The remaining diffusion part can
be solved by the FEM [10,11] or by the FDM [12], or by the BEM on a separate grid. The
influence of the advection is projected from one grid to another by local interpolation.

In the present study, an accurate Eulerian–Lagrangian boundary element method (ELBEM)
is proposed for the first time for the velocity–vorticity formulation of the Navier–Stokes
equations. The Poisson-type equations are solved using the general boundary integral tech-
nique with domain integration for the source terms and from which the vorticity boundary
conditions are exactly determined. The vorticity transport equation is solved using the ELBEM
on a transformed characteristic domain. Based on the concept of the ELM, the formulation of
the ELBEM and its associated fundamental solution is obtained for vorticity transport
equations. By combining the ELM and BEM, the BEM is made easier to handle the variable
velocity field. In this paper, the interpolation procedure for the ELM computation of the
convection part is replaced with the process of the more accurate BEM interior point
evaluation, and hence the interpolation error is avoided.

The application of the ELBEM model to incompressible viscous flow problems has been
demonstrated using the well-known model problem of flow in a driven square cavity. The
cavity flow problem is of continuing interest because it offers a relatively simple model on
which numerical techniques may be examined and verified with other numerical schemes.
Using the ELBEM model, satisfactory results comparable with other models in literature are
presented for Reynolds number of up to 2000.
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After presenting the governing equations, the numerical formulation using the ELBEM are
briefly described. Then the solution procedure and numerical results for the two-dimensional
driven cavity flow problem are described, followed by a few concluding remarks.

2. GOVERNING EQUATIONS

The governing equations for mass and linear momentum transport for an incompressible
Newtonian fluid can be written as [13]

(ū
(t

+ ū ·9ū= −9p+
1

Re
92ū (1)

9 · ū=0 (2)

where ū is the velocity vector, p is the pressure, Re is the Reynolds number and t is the time.
Equations (1) and (2) represent the Navier–Stokes equations in the velocity–pressure
formulation.

The vorticity vector v̄ can be expressed as

v̄=9× ū (3)

By taking the curl of both sides of Equation (1) and using Equations (2) and (3), we can obtain
the vorticity transport equation as follows:

(v̄

(t
+ ū ·9v̄=v̄ ·9ū+

1
Re

92v̄ (4)

By taking the curl of Equation (3) and using Equation (2) we get

92ū= −9×v̄ (5)

which is the vector form of Poisson’s equation for ū.
Equations (4) and (5), with ū and v̄ as velocity and vorticity vectors, are known as the

velocity–vorticity formulation of the Navier–Stokes equations, and can replace Equations (1)
and (2) in which ū and p are primitive variables.

We seek a solution in the domain V, which satisfies the initial conditions

ū= ū0, v̄=9× ū0 at t=0 (6)

and the boundary conditions

ū= ūG, v̄= (9× ū)�G at t]0 (7)

on the boundary G of V.
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For two-dimensional problems, if (u, 6) are the velocity vectors (ū) and v is the associ-
ated vorticity, then from Equation (4), the vorticity transport equation can be written as

(v

(t
+ ū ·9v=

1
Re

92v (8)

Equation (5) can be written as

92u= −
(v

(y
(9)

926=
(v

(x
(10)

The solution of the vorticity–transport equation (8), in combination with the velocity
Poisson equations (9) and (10) with reference to initial and boundary conditions, gives the
velocity and the vorticity distribution all over the domain at the concerned time step.

For the velocity–vorticity formulation, there are certain aspects to be noted [1,14]. Even
though the continuity equation has been assumed to be satisfied for the derivation of
velocity Poisson equations (9) and (10), it may not be necessarily guaranteed for the
integral or difference equations based on the velocity–vorticity formulation. In two-
dimensional problems, the continuity equation (2) can be described as

D=
(u
(x

+
(6

(y
=0 (11)

Differentiating Equations (9) and (10) for x and y respectively and adding the resulting
equations, we get

(2

(x2 (D)+
(2

(y2 (D)=0 (12)

As explained by Fusegi and Farouk [14], from the ‘maximum principle’ it follows that
�D � is maximal on the boundary. It can be concluded that continuity (D=0) is ensured in
the entire integration domain if it is satisfied on the boundary of the problem. Hence, if
care is taken to satisfy the continuity condition to a high degree of accuracy on the
boundaries, mass conservation is ensured to an even higher accuracy in the interior of the
integration domain of the problem. The vorticity definition can be considered in a similar
way [1,14]. For the class of problem analyzed in the present investigations, and by the
assumption of no-slip walls on the boundaries, the continuity condition is automatically
satisfied.
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3. NUMERICAL FORMULATION

As mentioned earlier, in the solution of the velocity–vorticity formulation of Navier–Stokes
equations using the present model, the vorticity transport equation (8) is solved using the
ELBEM and the Poisson-type velocity equations (9) and (10) are solved using the boundary
integral equation scheme. In this section, the numerical formulation is briefly described.

3.1. BEM formulation of 6elocity Poisson equations

Consider the Poisson-type velocity equation in u and v, say Equation (9)

92u= −
(v

(y
=b (13)

with velocity boundary conditions as

u=u0 on G1, q0=
(u0

(n
on G2 (14)

where n is the unit outward normal vector. In the present model, an iterative scheme is used
such that the vorticity is known in the current iteration and time step from the previous step
by solving the vorticity transport equation (8).

Considering u*= ln(r) as the fundamental solution of the Laplace equation in two dimen-
sions, from Green’s theorem, the boundary integral equation for Equation (13) can be written
as

Ciui=
&

G
uq* dG−

&
G

qu* dG+
&

V
bu* dV (15)

where Ci is Green’s constant, q=(u/(n, q*=(u*/(n and r is the distance from the collocation
point (k) to other field points (i ), defined as

r=
(xk−xi)2+ (yk−yi)2 (16)

Considering Equation (13), b= − ((v/(y). In Equation (15), let the domain integral be
represented as

B=
&

V
−
(v

(y
u* dV (17)

Now from Green’s theorem, we can write Equation (17) as

B= +
&

V
v
(u*
(y

dV+
&

G
vu* dx (18)
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Now (u*/(y can be found as

( ln(r)
(y

=
yk−yi

(xk−xi)2+ (yk−yi)2 (19)

Therefore, Equation (18) can be written as

B= +
&

V
v

yk−yi

(xk−xi)2+ (yk−yi)2 dV+
&

G
vu* dx (20)

Now we can write Equation (15) as

Ciui=
&

G
uq* dG−

&
G

qu* dG+
&

V
v

yk−yi

(xk−xi)2+ (yk−yi)2 dV+
&

G
vu* dx (21)

In a similar way, the boundary integral equation for Equation (10) can be derived using
Green’s theorem as

Ci6i=
&

G
6q* dG−

&
G

q %u* dG−
&

V
v

xk−xi

(xk−xi)2+ (yk−yi)2 dV+
&

G
vu* dy (22)

where q %=(6/(n.
In Equations (21) and (22), we have boundary integrals and domain integrals. In the present

model, the domain integration is carried out by sub-dividing the domain into a series of
internal cells, on each of which a numerical integration is performed. Here linear elements are
used for the boundary discretization and two-dimensional isoparametric quadrilateral cells are
used for the internal discretization. The details of the element properties, shape functions,
co-ordinate transformation and numerical integration used here are described in Brebbia et al.
[6], which are not repeated here.

Here, considering Equation (21), if the domain is discretized into L internal cells, then the
domain integral can be written as

Di=
&

V
v

yk−yi

(xk−xi)2+ (yk−yi)2 dV= %
L

e=1

� %
NI

k=1

wk
�

v
yk−yi

(xk−xi)2+ (yk−yi)2

�
k

n
Ve (23)

where the integral has been approximated by a summation over different cells (e varies from
1 to L), wk are the Gauss integration weights, the function needs to be evaluated at integration
points k on each cell (k varies from 1 to NI, where NI is the total number of integration points
on each cell) and Ve is the area of cell e. The term Di is the result of the numerical integration
and is different for each position i of the boundary nodes.

Assuming that the boundary of the domain is discretized into NE linear elements with N
nodes, Equation (21) can be discretized and written in matrix form as
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−Ciui+ %
N

j=1

H( ijuj+Di= %
N

j=1

(Gijqj−Pijvj) (24)

Combining the effect of the constant term C with the H( matrix, we can write the system of
matrix as

Hu+D=Gq−Pv (25)

In Equation (25), the boundary conditions are introduced and the known values are taken to
the right-hand side to form a system of linear equations of the form

AX=F (26)

where X is a vector of unknown boundary values of u and q, and F is a known vector.
Equation (26) is solved using a Gauss elimination scheme and all the boundary values will be
then known. Once this is done, it is possible to calculate internal values of u or its derivatives.
The values of u are calculated at any internal point using Equation (24). Similar procedures are
used to calculate the values of 6 at any internal point using Equation (22).

The main advantage of using the BEM in the solution of the velocity Poisson equations is
the exact determination of the vorticity boundary conditions from the velocity flux values that
are obtained by the solution of Equation (25). The vorticity boundary condition that is
essential to solve the vorticity transport equation is directly obtained as the velocity normal
derivative from the solution of Equations (21) and (22), together with the no-slip boundary
conditions. If other numerical methods like the FDM or the FEM are used in the solution of
velocity Poisson equations, then the vorticity values are to be separately calculated from the
velocity values. By doing so, computational error for vorticity may be introduced. Besides, the
accuracy of the vorticity boundary conditions is very crucial for the convergence of the
velocity–vorticity formulation.

3.2. ELBEM formulation of 6orticity transport equation

The vorticity transport equation (8) is very similar to the form of unsteady convective diffusion
equation for transport phenomena [Young DL, Wang YF, Eldho TI. Solution of the advection
diffusion equation using the Eulerian–Lagrangian boundary element method. Engineering
Analysis with Boundary Elements 2000 (in press)]. For the solution of Equation (8), the initial
and boundary conditions should be prescribed. The initial condition, usually prescribed
vorticity, is described throughout the domain at some initial time as

v=vi(x̄) in V, t=0 (27)

Two common types of boundary conditions prescribed are

v=v0(t) on Gt, 0B t (28)
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q= −
1

Re
(v

(n
+ (ūv) · n̄=q0(t) on Gq, 0B t (29)

where q is the normal flux, V is the domain and G= (Gt@Gq) the boundary.
Owing to the Eulerian–Lagrangian concept, the computational domain is now chosen along

the characteristic domain, as shown in Figure 1. The vorticity transport equation is rewritten
by a hydrodynamic derivative within this new domain as

Dv

Dt
=

1
Re

92v in VE (30)

where the hydrodynamic derivative is defined as

Figure 1. Characteristic domain and boundaries.
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D
Dt

=
(

(t
+ ū ·9 (31)

The initial and boundary conditions are now defined as

v=vi(x̄) in VE, t=0 (32)

v=v0(t) on GT, 0B t (33)

q= −
1

Re
(v

(n
=q0(t) on GQ, 0B t (34)

Now using Green’s second identity, the boundary integral equation can be derived on the
characteristic domain as

a(x̄i, tn+1)v(x̄i, tn+1)=
& tn+1

t n

&
G

q̂(x̄i, tn; x̄, t)v(x̄, t) dGE dt

−
& tn+1

t n

&
G

v̂(x̄i, tn; x̄, t)q(x̄, t) dGE dt+
&

VE

v̂(x̄i, tn+1; x̄, tn)v(x̄, tn) dVE (35)

in which a is the Cauchy principle value, x̄i is the position vector of base point, x̄ is any field
point, and q and q̂ are the flux terms defined in the following equations:

q(x̄, t)= −
1

Re
(v

(n
(36)

q̂(x̄, t)= −
1

Re
(v̂

(n
(37)

The associated fundamental solution v̂ satisfies the source varying formally adjoint operator
of the governing equation (30). That is

Dv̂

Dt
−

1
Re

92v̂=d(x̄− x̄i)d(t− tn) (38)

Now the fundamental solutions can be easily derived for the one-, two- and three-dimensional
problems [15]

v̂(x̄, t ; x̄i, tn)=
Re

[4p(t− tn)]k/2 exp
�

−
Rer2

4(t− tn)
n

(39)

where r= �x̄− x̄i � is the Cartesian distance between the base point and the any field point. For
one-, two- and three-dimensional problems, k is equal to 1, 2 and 3 respectively.
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The integral equation (35) implies that the boundary conditions and initial condition are
treated as a continuous distribution of the impulse acting on the domain boundary. The third
term on the right-hand side of the integral equation (35), which is in the form of a volume
integral, represents the initial effect of the transport equation. The first and second terms on
the right-hand side, which are in the form of boundary integrals, express the induced effect of
the Dirichlet and Neumann boundary conditions.

For each time step tn+1, the computational domain VE coincides with the physical domain
V only at t= tn+1, and the boundary conditions and initial condition are given on the physical
boundary G, and the physical domain V of time step t= tn. However, the boundary and initial
values are required to be imposed in integral terms of Equation (35) on the computational
characteristics boundary GE (GT@GQ), and the domain VE of time step t= tn. The region of
the characteristic domain is determined by the method of characteristics as

dx̄
dt

= ū (40)

x̄ n= x̄ n+1− ū ·dt (41)

The higher-order fractional step technique, or the Runge–Kutta scheme if necessary, could be
used to improve the accuracy of the integration with respect to the time domain.

The boundary element approach [6] is used to solve the boundary integral equation (35) and
its associated boundary and initial conditions. Constant, or linear or quadratic shape functions
can be used to discretize [6] the temporal and spatial domain respectively, as

v(x̄, t)=F(t)v(x̄, tn+1), F(t)=1 at tn5 t5 tn+1 on GT and GQ (42)

q(x̄, t)=F(t)q(x̄, tn+1), F(t)=1 at tn5 t5 tk on GT and GQ (43)

v(x̄, tn+1)= %
N

j=1

Sj(x̄)v(x̄j, tn+1) at t= tn+1 on GT and GQ (44)

q(x̄, tn+1)= %
N

j=1

Sj(x̄)q(x̄j, tn+1) at t= tn+1 on GT and GQ (45)

v(x̄, t)= %
M

i=1

Ti(x̄)v(x̄i, t) at tn5 t5 tn+1 on GT and GQ (46)

where N is the number of the boundary nodes and M is the number of nodes of the
discretization of the volume integral and S and T are all the corresponding shape functions for
space. The use of constant elements for the temporal domain allows the analytic integral of
time [6] in Equation (35).

After approaching the base point included in the integral equation (35) to the boundary
nodes on VE at t= tn+1, and imposing the boundary conditions and initial conditions, a
simultaneous equations system can be written in the matrix form as
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Figure 2. Profile of u (a) and 6 (b) along the cavity vertical and horizontal centerline of a square cavity
for Re=100.
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[A ]N×L1{v}L1×1+ [B ]N×L2{q}L2×1={RHS}N×1 (47)

in which L1 and L2 are the unknown values of v and q respectively, and L1+L2=N. If the
time difference is the same, the elements included in the matrices [A ] and [B ] will not be
changed for every time step. Only the right-hand side vector {RHS} should be evaluated for
each time step due to the changes of the time-dependent boundary conditions and the solutions
of the previous time step solutions.

3.3. Determination of streamfunction

The streamfunction distribution of the two-dimensional fluid flow is determined from the
following formula:

92c= −v (48)

where c is the streamfunction. Similar to the BEM formulation of velocity Poisson equations
in Section 3.1, the boundary integral equation for Equation (48) can be written as

Figure 3. Vorticity distribution for Re=100.
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Cici=
&

G
c
( ln(r)
(n

dG−
&

G

(c

(n
ln(r) dG−

&
V

v ln(r) dV (49)

After the vorticity distribution is determined by solving the vorticity transport equation by
introducing the appropriate boundary conditions, the streamfunction distribution can be
determined by solving the boundary integral equation (49).

4. SOLUTION PROCEDURE

As mentioned earlier, here an iterative scheme is used in the solution of the velocity–vorticity
formulation of Navier–Stokes equations. In most of the incompressible viscous flow problems
solved using Navier–Stokes equations, the most natural boundary condition arises when the
velocity is prescribed all over the boundaries of the problem. The vorticity boundary
conditions are seldom prescribed and hence should be determined iteratively from computa-
tions. In the present model, the velocity Poisson equations are initially solved to get the
vorticity boundary conditions, which are used in the solution of the vorticity transport
equation. The computational procedure adopted here includes the following iterative steps:

Figure 4. Streamfunction distribution for Re=100.
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Figure 5. Profile of u (a) and 6 (b) along the cavity vertical and horizontal centerline of a square cavity
for Re=400.
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Figure 6. Vorticity distribution for Re=400.

For the time step n=1

1. Assume some initial values for vorticity distribution and derivatives, say zero.
2. Solution of the velocity Poisson equations using the BEM

� Solve for the unknown boundary velocity or velocity flux values using Equations (9)
and (10)

� Calculate the velocity distribution and velocity derivatives at all nodal points
� Determine the new vorticity boundary values using Equation (3)

3. Solution of the vorticity transport equations using the ELBEM
� Solve for the unknown vorticity values throughout the domain using Equation (8)
� Relax the vorticity values, if necessary

4. Check for convergence of the velocity and vorticity components in the present iteration, for
example

�un
k+1−un

k�
�un

k� 50.001
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If convergence criterion is satisfied, then stop and proceed to the next time step, otherwise
go to step 2.

5. In the successive time step, use the velocity and vorticity components from the previous
time step as initial conditions and use the iterative procedure, steps 2–4. The procedure is
repeated until the prescribed time step is reached.

In order to validate the self-consistency of the present formulation, calculations were made
to ensure the satisfaction of mass balance conditions in the entire domain for all the
computations. In all the calculations, mass balances were satisfied within 0.1 per cent.

For the unsteady computations, the time step was chosen with variations in Reynolds
number and the mesh size, according to the condition given by Liu and Dane [16] as

1
Re

Dt
� 1

(Dx)2+
1

(Dy)2

�
5

1
2

(50)

where Dx and Dy are the mesh size in the x- and y-Cartesian directions.

Figure 7. Streamfunction distribution for Re=400.
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Figure 8. Profile of u (a) and 6 (b) along the cavity vertical and horizontal centerline of a square cavity
for Re=1000.
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5. MODEL RESULTS AND DISCUSSIONS

The proposed ELBEM model has been applied on a test problem to verify the feasibility of the
model. The test problem is the classical ‘driven flow in a square cavity’, for which many
numerical model results are available in the literature. Present model results are compared with
the results of a series solution and FDM, FEM and BEM models in two dimensions.

The model problem consists of a square cavity with a moving top lid with constant velocity,
totally filled with an incompressible viscous fluid. In all the cases, the flow inside the cavity
was initially at rest. No-slip and impermeability conditions were imposed on all walls, with the
velocity at the upper wall set equal to unity. Due to the computational limitations (we used an
IBM AIX workstation with 128 MB RAM), the present analysis is limited to a maximum
computational mesh points of 60×60 (on the boundary as well as internal domain).

Four analyses have been presented here, for Re=100, 400, 1000 and 2000 respectively.
Although the computations were carried out in time, only steady state solutions are presented
here. In all the cases, steady states are reached.

Figure 9. Vorticity distribution for Re=1000.
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Figure 10. Streamfunction distribution for Re=1000.

Figure 2 shows the u- and 6-velocity profiles along the vertical and centerlines of the cavity
for Re=100. Two different grids of 40×40 and 60×60 uniform quadrilaterals have been
used for the computations. Figure 3 shows the vorticity distribution along the domain and
Figure 4 shows the profile of the streamfunction distribution along the domain. The velocity
variations are compared with different models of Burgraff [17], Ghia et al. [18,19], Young and
Lin [20] and Thomadakis and Leschziner [21]. The results mostly agree with all the model
results. From Figure 2 it can be seen that for both computational mesh grids, the results are
almost the same.

Figure 5 shows the u- and 6-velocity profiles along the vertical and centerlines of the cavity
for Re=400 with two different grids of 40×40 and 60×60 uniform quadrilaterals. Figures 6
and 7 show the vorticity and streamfunction distributions respectively along the domain. The
velocity variations are compared with different models of Burgraff [17], Ghia et al. [18,19],
Fusege and Farouk [14], Young and Lin [20], Giannattasio and Napolitano [22], Liao and Zhu
[23], and Thomadakis and Leschziner [21]. The results obtained are closer to the results of the
FEM and the finite volume models. As is obvious from the figures, the small difference to
other models can be attributed to the mesh size used in the present investigation.
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As the Reynolds number increases, the sensitivity to the grid density becomes more obvious.
For a higher Reynolds number, Re=1000, Figure 8 shows the x-component velocity profile
(u) and y-component velocity profile (6) on the vertical and horizontal centerline of the cavity.
Figures 9 and 10 show the vorticity and streamfunction distributions respectively along the
domain. Results of the analysis are again compared with the various models [14,18–21,23,24].
The present analysis is in good agreement with most of the models, bearing in mind that the
maximum mesh density was only 60×60. Further analysis has been carried out for a Reynolds
number of 2000 using 60×60 mesh. Figures 11–13 show the vorticity, streamfunction and
velocity distributions respectively along the domain.

The merit of the present model is that it provides the best way to treat the velocity–vorticity
formulation for two-dimensional flow by the BEM. In general, the boundary conditions of
vorticity are not known a priori, so that the solution of the vorticity transport equation is
rather difficult. However, the BEM solution of the velocity Poisson equations together with the
no-slip boundary conditions will automatically render the necessary vorticity boundary condi-
tions directly as the normal derivatives of velocity, while solving the boundary integral
equations. If numerical models like FDM and FEM are used in the solution of velocity

Figure 11. Vorticity distribution for Re=2000.
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Figure 12. Streamfunction distribution for Re=2000.

Poisson equations, then the boundary vorticity values have to be separately determined from
the velocity distribution, which may reduce the accuracy in determining the vorticity boundary
conditions for the solution of vorticity transport equation.

As the vorticity transport equation includes convective terms and time-dependent terms, the
general BEM solution [5,6] of vorticity transport equation is very difficult. The ELBEM,
proposed by combining the Eulerian–Lagrangian method and the BEM, has been proved to
be a feasible method to solve advective–diffusion equations such as the vorticity transport
equation [Young et al.]. Hence, the present model in which the velocity Poisson equations are
solved using the BEM and the vorticity transport equation is solved using ELBEM and the
iterative scheme combining both models provides the best way to treat the velocity–vorticity
formulation for two-dimensional incompressible flow problems. This study demonstrates that
even with a relatively coarse mesh, the solutions are very stable and fairly accurate as shown
in the case study with different Reynolds numbers.

The approximate number of iterations required for the convergence at each time step vary
from 50 to 500 depending on the value of the Reynolds number, time step and grid. Even
though the CPU time for each calculation has not been separately found out, typical CPU time
for the calculation varies from 1 to 6 h on an IBM AIX workstation for 60×60 mesh.
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Figure 13. Profile of the flow vectors for Re=2000.

Even though in the present analysis we have carried out the analysis up to a Reynolds
number of 2000, the method can be further used for higher Reynolds number with a refined
mesh, smaller time step and vorticity relaxation. The ELBEM has already been successfully
implemented for three-dimensional diffusion and advection problems [25; Young DL, Her BC,
Eldho TI. Boundary integral modeling of three-dimensional circulation and transport in
stratified estuaries. Journal of Engineering Mechanics, ASCE 2000 (in press)]. Authors also
have successfully implemented the velocity–vorticity formulation for the Stokes problem [26]
and the Navier–Stokes problem [27] in three dimensions by a combined BEM and FEM
scheme. Extension of the ELBEM model for three-dimensional Navier–Stokes equations in
velocity–vorticity form will be presented in one of our future papers.

6. CONCLUDING REMARKS

An accurate Eulerian–Lagrangian BEM for solving the velocity–vorticity Navier–Stokes
equations is proposed for the first time by the combination of the ELM and the BEM. The.
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Poisson-type velocity equations are solved using the general boundary integral technique with
domain integration for the source terms and the vorticity boundary conditions are exactly
determined. The vorticity transport equation is solved using the ELBEM on a transformed
characteristic domain. By the combination of the ELM and the BEM, the BEM is made easier
to handle the variable velocity field. Here the results of two-dimensional Navier–Stokes
problems with low–medium Reynolds numbers in a typical square cavity flow are presented.
A comparison with other numerical models demonstrates the feasibility of the present ELBEM
model.
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